

Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data

Trevor Williams¹, Seth Shulman², Joseph Sedlak³, Neil Ottenstein³, Brian Lounsbury²

AIAA SPACE 2016 Long Beach, CA Sept. 16, 2016

¹ NASA Goddard Space Flight Center; ² Honeywell Tech Solutions, Inc.; ³ ai Solutions, Inc.

Summary of Presentation

- MMS: four helioscience spacecraft flying in formation
- Spinners (3.05 RPM); 60 m wires
- Thrusters for attitude, orbit control
- Star camera attitude sensors
- Summary of presentation:
 - Spin axis targeting
 - Effects of environmental torques
 - Effects of active potential control device (jets of Indium ions) on observed spacecraft spin rate
 - Derivation of effective thrust
 - Analysis of MMS4 impact event in Feb. 2016, using attitude data

Spin Axis Target

- Spin axis (body Z-axis) must be near ecliptic pole
- This attitude ensures sunlight does not fall on upper deck
 - Upper deck illumination would cause emission of photoelectrons that would perturb the local plasma and field measurements
- However, spin axis needs some tilt towards the Sun
 - Tilt prevents shadows from pre-amplifiers on wire booms from crossing the spherical detectors at ends of wire booms
 - Shadows cause momentary interruption of photo-emissive electron cloud around detector spheres, again perturbing field measurements
- Target box for science ops is isosceles trapezoid, roughly
 2.5 deg × 2.5 deg with center tipped 3.5 deg toward Sun

Environmental Torques

- MMS Attitude Ground System (AGS) predicts when spin axis will drift to the edge of the target box
 - AGS plans attitude slews to center or to opposite edge of box to maximize time between maneuvers
 - Spin axis drift depends on seasonally changing environmental torques
 - Very rough order-of-magnitude estimates of torques

• Gravity-gradient: 10⁻⁴ N-m

• Solar pressure: 10⁻⁶ N-m

Aerodynamic drag: 10⁻⁷ N-m

So, only gravity-gradient (GG) torque is used in AGS predictions

Predicted Precession of Spin Axis

- AGS predicts GG drift of the spin axis direction
 - Early mission, after all booms deployed, drift was 0.05 deg per orbit (orbital period was close to 24 hours)
 - Plot shows accumulated drift error for 35 days with no maneuvers
 - Error in drift prediction was approximately 0.00034 deg per orbit

Seasonal Variation of Precession

- Magnitude and direction of GG precession vary seasonally
 - Orbit normal drifted approx. 21 deg during one year, affecting GG torque
 - Target box center follows the Sun motion of one deg per day
 - Attitude maneuvers are performed every 2 to 4 weeks to stay in target box
 - Plots show seasonal variation of magnitude of precession per orbit and angle between direction of precession and motion of box center
 - GG precession is helping when *angle* is near zero (i.e., longer time between maneuvers), but GG *magnitude* is smallest then (so it doesn't help much)
 - Avg. time between maneuvers was 30 days for the months when angle was small, and was 22.5 days for the entire post-commissioning time span

Observed Change In Spin Rate

 Distinct spin rate change observed at ASPOC (Active Spacecraft Potential Control Investigation) turn on and duty cycle changes

ASPOC Characteristics

- Purpose is to neutralize buildup of positive floating potential produced by the spacecraft/environment interaction
- Strong potential created between emitter and extractor
- Indium atoms ionized and accelerated by this electric field

- 2 active emitters on each Spacecraft
- Location produces a coupled negative (against direction of S/C rotation) torque

Determining Empirical Thrust

- Time between maneuvers defined as a sample
- Using average deceleration, center of mass, moment of inertia, and emitter energy an empirical emitter thrust is calculated

Determining Empirical Thrust

- Time between maneuvers defined as a sample
- Using average deceleration, center of mass, moment of inertia, and emitter energy an empirical emitter thrust is calculated

Summary of MMS4 Impact Event

- MMS4 relevant data observations:
 - Failure of one shunt resistor
 - Accelerometers detected spacecraft disturbance
 - Star cameras "blinded" by non-star objects; reset by fault detection
 - Small attitude excursions (change in spin axis direction; nutation etc.)
 - Science instruments detected plasma around spacecraft
- MMS4 state at event:
 - Radius 48,176 km (7.553 R_F): 6,012 km greater than GEO radius
 - Latitude -21.2 deg: 17,403 km below equatorial GEO plane
 - 4,414 km below Ecliptic
 - Orbital speed 2.661 km/s
- Geometry of event:
 - Impact, possibly oblique, on bottom face of spacecraft
- Goals of analysis: to the (limited) accuracy possible with given data
 - Identify candidate impactor sources
 - Estimate likely approach direction
- Estimate likely relative speed and mass of impactor Sept. 16, 20 stimate likely kinetic energy of initial impact

11

Impact Location (Shunt Resistor)

Shunt Resistor Data

•

- ...

• ...

Analysis Methodology

- Use relative sizes of <u>initial</u> spikes in accelerometer signals caused by event to estimate velocity direction of impactor relative to MMS
- Use change in MMS spin axis direction produced by event, together with known spacecraft angular momentum, to derive the transverse angular momentum applied to MMS by impactor
- From known impact point on spacecraft and estimated approach direction, this allows the linear momentum (mv_{rel}) of impactor relative to MMS CM to be computed
- From known position on orbit of impact, the MMS orbital velocity at the time of the event is known
- For assumed impactor population, can hence find estimated speed of impactor relative to MMS
- From the known linear momentum $m\nu_{rel}$ and relative speed $\nu_{rel},$ we can then estimate the mass m of the impactor
- Use these to estimate kinetic energy of initial impact, T=0.5mv_{rel}²

Accelerometer Measurements

X-axis: Initial spike -0.8 micro-g

Note: All three axes only sampled every 30 s, so actual first motion may not be observed

Y-axis: Initial spike 2.8 micro-g

Z-axis: Initial spike -1.7 micro-g

Resulting relative velocity direction estimate: 30.3 deg below spin plane

Sept. 16, 2016

Time (HH:MM:SS)

2016-033 16:38:55.131

2016-033 14:22:07.618

Rotation Rates, Transverse and Axial

Transverse:
Nutation/boom
vibration evident

Note brief dropout resulting from star cameras being blinded/resetting

Axial: No change in spin rate evident

2016-033 15:41:02.469

Sept. 16, 2016 16

2016-033 15:14:34.004

Pointing Angle Before Event

FFT of Pointing Angle Before Event

Pointing Angle After Event

Vibration with period of ~400 s dominates response

FFT of Pointing Angle After Event

Possible Sources of Impactor - 1

- Two possible sources have been studied:
 - Micrometeoroid (dust particle)
 - Debris originating in GEO and perturbed by lunisolar gravitation plus solar radiation pressure (SRP) to point of impact
- Micrometeoroid (dust) population:
 - Overall mass range: ~ 10⁻¹⁴ to 10⁰ gm
 - Peak mass range: ~10⁻⁸ to 10⁻³ gm (~2x10⁻⁴-0.9 mm diameter)
 - Flux tails off quickly: ~10⁻³ as high at 1 mm diameter as at 0.1 mm*

Fig. 2, "Micrometeoroid and Orbital Debris Environments for the International Space Station", Peterson and Lynch, 2008

Possible Sources of Impactor - 2

- Debris originating in GEO: GEO spacecraft have inclinations that oscillate between 0 and ~15 deg, as a result of lunisolar perturbations. The impact latitude of -21.2 deg exceeds this range; the impact radius was also 6,012 km above GEO
- However, objects released from GEO that have high area/mass ratios (> ~15 m²/kg) experience significant solar radiation pressure (SRP) perturbations in eccentricity (and so radius) and inclination
- References:
 - "Long-Term Dynamics of High Area-to-Mass Ratio Objects in High Earth Orbit", Rosengren and Scheeres, 2013
 - "Long-Term Evolution of Geosynchronous Orbital Debris with High Area-to-Mass Ratios", Pardini and Anselmo, 2006
- Possible debris source: multi-layer insulation (MLI). MLI degrades in GEO. See Tedlar thin film before, after 3 years simulated GEO*:

• Representative MLI layer density 40 gm/m²; area/mass 25 m²/kg
Sept. 16, 2016 *Radiative Heat Trade-Offs for Spacecraft Thermal Protection", S. Franke, AFRL

Particle Mass, Kinetic Energy Estimates

- Linear momentum of impactor must produce observed change in spin axis direction of 0.00157 deg
- Mass, KE estimates differ for the two candidate particle sources, as a result of the different relative speeds between particle and MMS4
- Micrometeoroid:
 - "Typical" relative speed 15 km/s (very wide variation is possible)
 - Resulting estimated particle mass 8.48x10⁻³ gm
 - Resulting kinetic energy 953.9 J (46.6% of muzzle energy of AK-47)
- Debris of GEO origin:
 - Orbital speed of debris at impact 2.661 km/s
 - Resulting relative speed ~4.292 km/s (depends on geometry)
 - Resulting estimated debris mass 2.96x10⁻² gm
 - If from an MLI layer with representative density 40 gm/m², this yields an area of 7.41x10⁻⁴ m², e.g. a square 2.72 cm on a side
 - Resulting kinetic energy 272.9 J (13.3% of muzzle energy of AK-47)
- From this analysis, it is difficult to select between the candidates. Perhaps impact dynamics analysis can lead to a determination

Backup Material

Angular Momentum

Transverse:
Nutation/boom
vibration evident

Axial: No change in spin rate evident. Consistent with shunt location being close to spin axis

Pointing Angle After Previous Maneuver

- Oscillation at same ~400 s period is clearly visible
- Observed after all spacecraft maneuvers
- Must be wire boom dynamics excited by thrusting/impact acceleration of central spacecraft body